Approximate Maximal Frequent Pattern Mining with Weight Conditions and Error Tolerance

Author:

Lee Gangin1,Yun Unil1,Ryang Heungmo1,Kim Donggyu1

Affiliation:

1. Department of Computer Engineering, Sejong University, Seoul, Republic of Korea

Abstract

Since the concept of frequent pattern mining was proposed, there have been many efforts to obtain useful pattern information from large databases. As one of them, applying weight conditions allows us to mine weighted frequent patterns considering unique importance of each item composing databases, and the result of analysis for the patterns provides more useful information than that of considering only frequency or support information. However, although this approach gives us more meaningful pattern information, the number of patterns found from large databases is extremely large in general; therefore, analyzing all of them may become inefficient and hard work. Thus, it is essential to apply a method that can selectively extract representative patterns from the enormous ones. Moreover, in the real-world applications, unexpected errors such as noise may occur, which can have a negative effect on the values of databases. Although the changes by the error are quite small, the characteristics of generated patterns can be turned definitely. For this reason, we propose a novel algorithm that can solve the above problems, called AWMax (an algorithm for mining Approximate weighted maximal frequent patterns (AWMFPs) considering error tolerance). Through the algorithm, we can obtain useful AWMFPs regardless of noise because of the consideration of error tolerance. Comprehensive performance experiments present that the proposed algorithm has more outstanding performance than previous state-of-the-art ones.

Funder

National Research Foundation of Korea

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3