Author:
Iqbal Mohammad,Afandy Achmad,Hidayat Nurul
Publisher
Springer Nature Singapore
Reference13 articles.
1. Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC Press (2017)
2. Dai, B., Shaw, A., Li, L., Xiao, L., He, N., Liu, Z., Chen, J., Song, L.: SBEED: Convergent reinforcement learning with nonlinear function approximation. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 1125–1134. PMLR, 10–15 Jul 2018. https://proceedings.mlr.press/v80/dai18c.html
3. Dlugosz, Z., Dlugosz, R.: Nonlinear activation functions for artificial neural networks realized in hardware. In: 2018 25th International Conference Mixed Design of Integrated Circuits and System (MIXDES), pp. 381–384 (2018)
4. Grigorescu, S., Trasnea, B., Cocias, T., Macesanu, G.: A survey of deep learning techniques for autonomous driving. J. Field Robotics 37(3), 362–386 (2020). https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21918
5. Haider, A., Hawe, G., Wang, H., Scotney, B.: Gaussian based non-linear function approximation for reinforcement learning. SN Comput. Sci. 2(223) (2021). https://link.springer.com/article/10.1007/s42979-021-00642-4