Gaussian Based Non-linear Function Approximation for Reinforcement Learning

Author:

Haider AbbasORCID,Hawe Glenn,Wang Hui,Scotney Bryan

Abstract

AbstractReinforcement learning (RL) problems with continuous states and discrete actions (CSDA) can be found in classic examples such as Cart Pole and Puck World, as well as real world applications such as Market Making. Solutions to CSDA problems typically involve a function approximation (FA) of the mapping from states to actions and can be linear or nonlinear. Linear FAs such as tile-coding (Sutton and Barto in Reinforcement learning, 2nd ed, 2009) suffer from state information loss due to state discretization, whilst non-linear FAs such as DQN (Mnih et al. in Playing atari with deep reinforcement learning, https://arxiv.org/abs/1312.5602, 2013) are practically infeasible in infinitely large state spaces due to their cubic time complexity ($$O(n^3)$$ O ( n 3 ) ). In this paper, we propose a novel, general solution to CSDA problems, called Gaussian distribution based non-linear function approximation (GBNLFA). Experimentation on three CSDA RL problems (Cart Pole, Puck World, Market Marking) demonstrates the superiority of GBNLFA over state-of-the-art FAs, namely tile-coding and DQN. In particular, GBNLFA resolves the state information loss problem with linear FAs and provides an asymptotically faster algorithm (O(n)) than linear FAs ($$O(n^2)$$ O ( n 2 ) ) and neural network based nonlinear FAs ($$O(n^3)$$ O ( n 3 ) ).

Funder

Ulster University (GB) VCRS

Publisher

Springer Science and Business Media LLC

Reference29 articles.

1. Anschel O, Baram N, Shimkin N. Averaged-dqn: variance reduction and stabilization for deep reinforcement learning. In: Proceedings of the 34th international conference on machine learning, PMLR, vol. 70. 2017. p. 176–85.

2. Avellaneda M, Stoikov S. High-frequency trading in a limit order book. Quant Finance. 2008;8(3):217–24.

3. Bertsekas DP, Tsitsiklis JN. Neuro-dynamic programming. Nashua: Athena Scientific; 1996.

4. Davies S. Multidimensional triangulation and interpolation for reinforcement learning. https://scottdavies.net/nips96.pdf. 1997.

5. Geist M, Pietquin O, Fricout G. Kalman temporal differences: the deterministic case. In: 2009 IEEE symposium on adaptive dynamic programming and reinforcement learning. 2009.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3