Abstract
AbstractAn accurate determination of Hoek–Brown constant mi is of great significance in the estimation of the failure criteria of brittle rock materials. So far, different approaches such as rigidity index method (R-index), uniaxial compressive strength-based method, and tensile strength-based method, and the combination of these two methods (combination based method) have been proposed to calculate the value of mi. This paper aims to thoroughly review the previously existing methods to calculate the value of mi and make comparison between the obtain results to propose the new material constants that provide the best fit with the experimental data. In order to fulfill this goal, a large number of data for different quasi-isotropic intact rock types from the literature were collected and statistically analyzed. Additionally, based on rock types, new material constants are introduced for igneous, sedimentary, and metamorphic rocks. The obtained results proves that for different rock groups (igneous, sedimentary, and metamorphic rocks), R-index method provides the best fit with the experimental data among the others, and it is also independent of rock type. Interestingly enough, there is significant differences in the predicted mi values using different methods, which is more probably due to the quantity and quality of data used in the statistical analysis.
Funder
Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
Hungarian Scientific Research Fund
Budapest University of Technology and Economics
Publisher
Springer Science and Business Media LLC
Subject
Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献