Brittle-ductile transition stress of different rock types and its relationship with uniaxial compressive strength and Hoek–Brown material constant (mi)

Author:

Davarpanah Seyed Morteza,Sharghi Mohammad,Narimani Samad,Török Ákos,Vásárhelyi Balázs

Abstract

AbstractRocks deformed at low confining pressure are brittle, which means that after peak stress, the strength declines to a residual value established by sliding friction. The stress drop is the variation between peak and residual values. But no tension reduction takes place at high confining pressure. A proposed definition of the brittle-ductile transition is the transition pressure at which no loss in strength takes place. However, studies that consider information about the brittle-ductile transition, the criterion's range of applicability, how to determine mi, and how confining pressures affect mi's values are scarce. This paper aims to investigate the link between brittle-ductile transition stress, uniaxial compressive strength and Hoek–Brown material constant (mi) for different kinds of rock. It is essential to accurately determine the brittle-ductile transition stress to derive reliable values for mi. To achieve this purpose, a large amount of data from the literature was chosen, regression analysis was carried out, and brittle-ductile transition stress (σTR) was determined based on the combination of Hoek–Brown failure criteria and the recently used brittle-ductile transition stress limit of Mogi. Moreover, new nonlinear correlations were established between uniaxial compressive strength and Hoek–Brown material constant (mi) for different igneous, sedimentary and metamorphic rock types. Regression analyses show that the determination coefficient between σTR and UCS for gneiss is 0.9, sandstone is 0.8, and shale is 0.74. Similarly, the determination coefficient between σTR and mi for gneiss is 0.88. The correlation between Hoek–Brown material constant (mi) and σTR was not notable for sedimentary and metamorphic rocks, probably due to sedimentary rocks' stratification and metamorphic ones' foliation.

Funder

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3