Improving constant-volume simulations of undrained behaviour in DEM

Author:

Keishing Joel,Hanley Kevin J.

Abstract

AbstractIn order to simulate undrained conditions using the discrete element method, a constant sample volume is often assumed. There are well-recognised problems with these constant-volume triaxial simulations, particularly of dense samples, which inhibit quantitative comparison with laboratory experiments. In this paper, four possible explanations for these problems with conventional constant-volume simulations of ideal spherical particles are explored, each of which has a physical basis: particle crushing, the presence of highly compressible air within the sample, or the reduction in stiffness due to particle surface asperities or non-spherical particle shapes. These options are explored independently and in combination through implementation in the open-source LAMMPS code. In situations where a significant amount of particle crushing occurs, it is important to incorporate this in the simulations so that stresses are not over-estimated. There is experimental evidence that irregular particles have lower Young’s moduli than the Hertzian spheres often used in DEM. In the absence of particle crushing, the most effective method to achieve more realistic stress–strain responses is to reduce the particle shear modulus substantially. This approach has the added computational benefit of enabling an increase in the simulation time-step.

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3