A novel unresolved/semi‐resolved CFD‐DEM coupling method with dynamic unstructured mesh

Author:

He Jin‐Hui1ORCID,Li Ming‐Guang1ORCID,Chen Jin‐Jian1

Affiliation:

1. Department of Civil Engineering Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure Shanghai Jiao Tong University Shanghai China

Abstract

AbstractThe greatest challenge when performing large deformation simulations using the CFD‐DEM coupling method lies in the dynamical update of the fluid meshes. To address this problem, a novel CFD‐DEM coupling method integrated with the dynamic unstructured grid is proposed in this work. The mesh initialization and reconstruction are performed by the Constrained Delaunay triangulation (CDT) implemented by the tetgen algorithm. Moreover, the equation of state (EOS) is introduced to consider the impact of fluid compressibility. The reliability of this coupling method is preliminarily verified by the particle sedimentation test. Additionally, undrained triaxial shear and one‐dimensional consolidation tests are conducted to examine the applicability of the proposed method in simulating geotechnical cases. From our analysis, it is found that the shear responses in the undrained triaxial shear test obtained from the proposed method with dynamic mesh are in direct accordance with those led by the constant volume (CV) method. However, difficulties arise in accurately describing the moving boundary by the fixed mesh, leading to unreliable results. Moreover, in the one‐dimensional consolidation test, both the dynamic and fixed grids can capture the Mandel—Cryer effect, which is more pronounced under the dynamic grid, mainly due to the dual impact of the loading device and particle skeleton on the fluid. A greater compressibility specified under the dynamic grid led to a weakening of this effect, whereas its duration is increased. Our work provides valuable insights for effectively dealing with dynamic fluid boundaries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai Municipality

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3