Affiliation:
1. Department of Engineering, University of Cambridge UK
2. Graduate School of Science and Engineering, Yamaguchi University Japan
3. Department of Civil, Environmental and Geomatic Engineering, University College London UK
Abstract
This paper provides a micro-mechanical commentary on the macroscopic behaviour observed in DEM simulations of the compression of individual crushable grains, and of triaxial tests on assemblies of both crushable and uncrushable grains. A fragmentation ratio is defined to describe the bond breakage processes, and the significance of other micro-mechanical parameters such as sliding contacts ratio, average coordination number, deviator fabric, and internal energies per unit volume is discussed. Three different modes of grain damage were observed: asperity breakage, internal shear cracking, and internal tensile cracking leading to fast fracture. Energy balances both for the compression of a single grain, and for triaxial tests on assemblies of grains, showed that the loss of elastic energy due to bond breakage was a negligible fraction of the significantly enhanced dissipation encountered with crushable materials. This extra dissipation was associated with frictional sliding triggered by the creation of new degrees of freedom among the breaking fragments. Different modes of grain breakage were found to be representative of different regions of soil states of stress defined with respect to the virgin compression line. The secondary role of elastic grain deformability, increasing coordination number but reducing dilatancy, has also been demonstrated.
Subject
Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology
Cited by
261 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献