MTHSA-DHEI: multitasking harmony search algorithm for detecting high-order SNP epistatic interactions

Author:

Tuo ShouhengORCID,Li Chao,Liu Fan,Li Aimin,He Lang,Geem Zong Woo,Shang JunLiang,Liu Haiyan,Zhu YanLing,Feng ZengYu,Chen TianRui

Abstract

AbstractGenome-wide association studies have succeeded in identifying genetic variants associated with complex diseases, but the findings have not been well interpreted biologically. Although it is widely accepted that epistatic interactions of high-order single nucleotide polymorphisms (SNPs) [(1) Single nucleotide polymorphisms (SNP) are mainly deoxyribonucleic acid (DNA) sequence polymorphisms caused by variants at a single nucleotide at the genome level. They are the most common type of heritable variation in humans.] are important causes of complex diseases, the combinatorial explosion of millions of SNPs and multiple tests impose a large computational burden. Moreover, it is extremely challenging to correctly distinguish high-order SNP epistatic interactions from other high-order SNP combinations due to small sample sizes. In this study, a multitasking harmony search algorithm (MTHSA-DHEI) is proposed for detecting high-order epistatic interactions [(2) In classical genetics, if genes X1 and X2 are mutated and each mutation by itself produces a unique disease status (phenotype) but the mutations together cause the same disease status as the gene X1 mutation, gene X1 is epistatic and gene X2 is hypostatic, and gene X1 has an epistatic effect (main effect) on disease status. In this work, a high-order epistatic interaction occurs when two or more SNP loci have a joint influence on disease status.], with the goal of simultaneously detecting multiple types of high-order (k1-order, k2-order, …, kn-order) SNP epistatic interactions. Unified coding is adopted for multiple tasks, and four complementary association evaluation functions are employed to improve the capability of discriminating the high-order SNP epistatic interactions. We compare the proposed MTHSA-DHEI method with four excellent methods for detecting high-order SNP interactions for 8 high-orderepistatic interaction models with no marginal effect (EINMEs) and 12 epistatic interaction models with marginal effects (EIMEs) (*) and implement the MTHSA-DHEI algorithm with a real dataset: age-related macular degeneration (AMD). The experimental results indicate that MTHSA-DHEI has power and an F1-score exceeding 90% for all EIMEs and five EINMEs and reduces the computational time by more than 90%. It can efficiently perform multiple high-order detection tasks for high-order epistatic interactions and improve the discrimination ability for diverse epistasis models.

Funder

Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3