Cluster effect for SNP–SNP interaction pairs for predicting complex traits

Author:

Lin Hui-Yi,Mazumder Harun,Sarkar Indrani,Huang Po-Yu,Eeles Rosalind A.,Kote-Jarai Zsofia,Muir Kenneth R., ,Schleutker Johanna,Pashayan Nora,Batra Jyotsna, ,Neal David E.,Nielsen Sune F.,Nordestgaard Børge G.,Grönberg Henrik,Wiklund Fredrik,MacInnis Robert J.,Haiman Christopher A.,Travis Ruth C.,Stanford Janet L.,Kibel Adam S.,Cybulski Cezary,Khaw Kay-Tee,Maier Christiane,Thibodeau Stephen N.,Teixeira Manuel R.,Cannon-Albright Lisa,Brenner Hermann,Kaneva Radka,Pandha Hardev, ,Park Jong Y.

Abstract

AbstractSingle nucleotide polymorphism (SNP) interactions are the key to improving polygenic risk scores. Previous studies reported several significant SNP–SNP interaction pairs that shared a common SNP to form a cluster, but some identified pairs might be false positives. This study aims to identify factors associated with the cluster effect of false positivity and develop strategies to enhance the accuracy of SNP–SNP interactions. The results showed the cluster effect is a major cause of false-positive findings of SNP–SNP interactions. This cluster effect is due to high correlations between a causal pair and null pairs in a cluster. The clusters with a hub SNP with a significant main effect and a large minor allele frequency (MAF) tended to have a higher false-positive rate. In addition, peripheral null SNPs in a cluster with a small MAF tended to enhance false positivity. We also demonstrated that using the modified significance criterion based on the 3 p-value rules and the bootstrap approach (3pRule + bootstrap) can reduce false positivity and maintain high true positivity. In addition, our results also showed that a pair without a significant main effect tends to have weak or no interaction. This study identified the cluster effect and suggested using the 3pRule + bootstrap approach to enhance SNP–SNP interaction detection accuracy.

Funder

U.S. Department of Defense

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3