Adversarial attacks on cooperative multi-agent deep reinforcement learning: a dynamic group-based adversarial example transferability method

Author:

Zan Lixia,Zhu XiangbinORCID,Hu Zhao-LongORCID

Abstract

AbstractExisting research shows that cooperative multi-agent deep reinforcement learning (c-MADRL) is vulnerable to adversarial attacks, and c-MADRL is increasingly being applied to safety-critical domains. However, the robustness of c-MADRL against adversarial attacks has not been fully studied. In the setting of c-MADRL, unlike the single-agent scenario, an adversary can attack multiple agents or all agents at each time step, but the attacker needs more computation to generate adversarial examples and will be more easily detected. Therefore, how the attacker chooses one or several agents instead of all agents to attack is a significant issue in the setting of c-MADRL. Aiming to address this issue, this paper proposes a novel adversarial attack approach, which dynamically groups the agents according to relevant features and selects a group to attack based on the group’s contribution to the overall reward, thus effectively reducing the cost and number of attacks, as well as improving attack efficiency and decreasing the chance of attackers being detected. Moreover, we exploit the transferability of adversarial examples to greatly reduce the computational cost of generating adversarial examples. Our method is tested in multi-agent particle environments (MPE) and in StarCraft II. Experimental results demonstrate that our proposed method can effectively degrade the performance of multi-agent deep reinforcement learning algorithms with fewer attacks and lower computational costs.

Funder

National Natural Science Foundation of China

Key project of Philosophy and Social Science of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3