DIB-UAP: enhancing the transferability of universal adversarial perturbation via deep information bottleneck

Author:

Wang YangORCID,Zheng Yunfei,Chen Lei,Yang Zhen,Cao Tieyong

Abstract

AbstractSignificant structural differences in DNN-based object detectors hinders the transferability of adversarial attacks. Studies show that intermediate features extracted by the detector contain more model-independent information, and disrupting these features can enhance attack transferability across different detectors. However, the challenge lies in selecting crucial features that impact detection from redundant intermediate features. To address this issue, we introduce the Deep information bottleneck universal adversarial perturbation (DIB-UAP). DIB-UAP utilizes the deep information bottleneck to establish a link between intermediate features and model output, extracting crucial intermediate features and disrupting them to generate UAP with strong attack transferability. Additionally, we propose a data augmentation method, Scale & Tile, which effectively enhances the attack performance of UAP on medium and large-scale objects. Testing on two benchmark datasets with eight comparative methods across four black-box mainstream detectors has confirmed the attack transferability of DIB-UAP. Furthermore, practical utility validation of DIB-UAP has been conducted on a commercial object detection platform.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3