Abstract
AbstractTelemanipulation in power stations commonly require robots first to open doors and then gain access to a new workspace. However, the opened doors can easily close by disturbances, interrupt the operations, and potentially lead to collision damages. Although existing telemanipulation is a highly efficient master–slave work pattern due to human-in-the-loop control, it is not trivial for a user to specify the optimal measures to guarantee safety. This paper investigates the safety-critical motion planning and control problem to balance robotic safety against manipulation performance during work emergencies. Based on a dynamic workspace released by door-closing, the interactions between the workspace and robot are analyzed using a partially observable Markov decision process, thereby making the balance mechanism executed as belief tree planning. To act the planning, apart from telemanipulation actions, we clarify other three safety-guaranteed actions: on guard, defense and escape for self-protection by estimating collision risk levels to trigger them. Besides, our experiments show that the proposed method is capable of determining multiple solutions for balancing robotic safety and work efficiency during telemanipulation tasks.
Funder
China Scholarship Council
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献