Author:
Li Yuanchun,Zhu Xinye,An Tianjiao,Dong Bo
Abstract
AbstractA critic-observer decentralized force/position approximate optimal control method is presented to address the joint trajectory and contacted force tracking problem of modular and reconfigurable manipulators (MRMs) with uncertain environmental constraints. The dynamic model of the MRM systems is formulated as an integration of joint subsystems via extensive state observer (ESO) associated with the effect of interconnected dynamic coupling (IDC). A radial basis function neural network (RBF-NN) is developed to deal with the IDC effects among the independent joint subsystems. Based on adaptive dynamic programming (ADP) approach and policy iteration (PI) algorithm, the Hamilton–Jacobi–Bellman (HJB) equation is approximately solved by establishing critic NN structure and then the approximated optimal control policy can be derived. The closed-loop manipulator system is proved to be asymptotic stable by using the Lyapunov theory. Finally, simulation results are provided to demonstrate the effectiveness and advantages of the proposed control method.
Funder
National Natural Science Foundation of China
Jilin Scientific and Technological Development Program
Science and Technology project of Jilin Provincial Education Department of China during the 13th Five-Year Plan Period
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献