An attention mechanism module with spatial perception and channel information interaction

Author:

Wang Yifan,Wang Wu,Li YangORCID,Jia Yaodong,Xu Yu,Ling Yu,Ma Jiaqi

Abstract

AbstractIn the field of deep learning, the attention mechanism, as a technology that mimics human perception and attention processes, has made remarkable achievements. The current methods combine a channel attention mechanism and a spatial attention mechanism in a parallel or cascaded manner to enhance the model representational competence, but they do not fully consider the interaction between spatial and channel information. This paper proposes a method in which a space embedded channel module and a channel embedded space module are cascaded to enhance the model’s representational competence. First, in the space embedded channel module, to enhance the representational competence of the region of interest in different spatial dimensions, the input tensor is split into horizontal and vertical branches according to spatial dimensions to alleviate the loss of position information when performing 2D pooling. To smoothly process the features and highlight the local features, four branches are obtained through global maximum and average pooling, and the features are aggregated by different pooling methods to obtain two feature tensors with different pooling methods. To enable the output horizontal and vertical feature tensors to focus on different pooling features simultaneously, the two feature tensors are segmented and dimensionally transposed according to spatial dimensions, and the features are later aggregated along the spatial direction. Then, in the channel embedded space module, for the problem of no cross-channel connection between groups in grouped convolution and for which the parameters are large, this paper uses adaptive grouped banded matrices. Based on the banded matrices utilizing the mapping relationship that exists between the number of channels and the size of the convolution kernels, the convolution kernel size is adaptively computed to achieve adaptive cross-channel interaction, enhancing the correlation between the channel dimensions while ensuring that the spatial dimensions remain unchanged. Finally, the output horizontal and vertical weights are used as attention weights. In the experiment, the attention mechanism module proposed in this paper is embedded into the MobileNetV2 and ResNet networks at different depths, and extensive experiments are conducted on the CIFAR-10, CIFAR-100 and STL-10 datasets. The results show that the method in this paper captures and utilizes the features of the input data more effectively than the other methods, significantly improving the classification accuracy. Despite the introduction of an additional computational burden (0.5 M), however, the overall performance of the model still achieves the best results when the computational overhead is comprehensively considered.

Funder

Jilin Provincial Scientific and Technological Development Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3