A GM-JMNS-CPHD Filter for Different-Fields-of-View Stochastic Outlier Selection for Nonlinear Motion Tracking

Author:

Wang Liu123,Zhao Jian123,Shi Lijuan124,Liu Yuan124,Zhang Jing124

Affiliation:

1. The Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Changchun University, Ministry of Education, Changchun 130012, China

2. Jilin Provincial Key Laboratory of Human Health Status Identification & Function Enhancement, Changchun 130000, China

3. College of Computer Science and Technology, Changchun University, Changchun 130000, China

4. College of Electronic and Information Engineering, Changchun University, Changchun 130000, China

Abstract

Most multi-target movements are nonlinear in the process of movement. The common multi-target tracking filtering methods directly act on the multi-target tracking system of nonlinear targets, and the fusion effect is worse under the influence of different perspectives. Aiming to determine the influence of different perspectives on the fusion accuracy of multi-sensor tracking in the process of target tracking, this paper studies the multi-target tracking fusion strategy of a nonlinear system with different perspectives. A GM-JMNS-CPHD fusion technique is introduced for random outlier selection in multi-target tracking, leveraging sensors with limited views. By employing boundary segmentation from distinct perspectives, the posterior intensity function undergoes decomposition into multiple sub-intensities through SOS clustering. The distribution of target numbers within the respective regions is then characterized by the multi-Bernoulli reconstruction cardinal distribution. Simulation outcomes demonstrate the robustness and efficacy of this approach. In comparison to other algorithms, this method exhibits enhanced robustness even amidst a decreased detection probability and heightened clutter rates.

Funder

Jilin Provincial Department of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3