Abstract
In this review, we provide a detailed coverage of multi-sensor fusion techniques that use RGB stereo images and a sparse LiDAR-projected depth map as input data to output a dense depth map prediction. We cover state-of-the-art fusion techniques which, in recent years, have been deep learning-based methods that are end-to-end trainable. We then conduct a comparative evaluation of the state-of-the-art techniques and provide a detailed analysis of their strengths and limitations as well as the applications they are best suited for.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献