DSC-MVSNet: attention aware cost volume regularization based on depthwise separable convolution for multi-view stereo

Author:

Zhang SongORCID,Wei ZhiweiORCID,Xu WenjiaORCID,Zhang Lili,Wang Yang,Zhou Xin,Liu Junyi

Abstract

AbstractDeep learning has recently been proven to deliver excellent performance in multi-view stereo (MVS). However, it is difficult for deep learning-based MVS approaches to balance their efficiency and effectiveness. Towards this end, we propose the DSC-MVSNet, a novel coarse-to-fine and end-to-end framework for more efficient and more accurate depth estimation in MVS. In particular, we propose an attention aware 3D UNet-shape network, which first uses the depthwise separable convolutions for cost volume regularization. This mechanism enables effective aggregation of information and significantly reduces the model parameters and computation by transforming the ordinary convolution on cost volume as depthwise convolution and pointwise convolution. Besides, a 3D-Attention module is proposed to alleviate the feature mismatching problem in cost volume regularization and aggregate the important information of cost volume in three dimensions (i.e. channel, space, and depth). Moreover, we propose an efficient Feature Transfer Module to upsample the low-resolution (LR) depth map to a high-resolution (HR) depth map to achieve higher accuracy. With extensive experiments on two benchmark datasets, i.e. DTU and Tanks & Temples, we demonstrate that the parameters of our model are significantly reduced to $$25\%$$ 25 % of the state-of-the-art model MVSNet. Besides, our method outperforms or maintains on par accuracy with the state-of-the-art models. Our source code is available at https://github.com/zs670980918/DSC-MVSNet.

Funder

Youth Innovation Promotion Association

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3