BugPre: an intelligent software version-to-version bug prediction system using graph convolutional neural networks

Author:

Wang ZixuORCID,Tong WeiyuanORCID,Li Peng,Ye Guixin,Chen Hao,Gong Xiaoqing,Tang Zhanyong

Abstract

AbstractSince defects in software may cause product fault and financial loss, it is essential to conduct software defect prediction (SDP) to identify the potentially defective modules, especially in the early stage of the software development lifecycle. Recently, cross-version defect prediction (CVDP) began to draw increasing research interests, employing the labeled defect data of the prior version within the same project to predict defects in the current version. As software development is a dynamic process, the data distribution (such as defects) during version change may get changed. Recent studies utilize machine learning (ML) techniques to detect software defects. However, due to the close dependencies between the updated and unchanged code, prior ML-based methods fail to model the long and deep dependencies, causing a high false positive. Furthermore, traditional defect detection is performed on the entire project, and the detection efficiency is relatively low, especially on large-scale software projects. To this end, we propose BugPre, a CVDP approach to address these two issues. BugPre is a novel framework that only conducts efficient defect prediction on changed modules in the current version. BugPre utilizes variable propagation tree-based associated analysis method to obtain the changed modules in the current version. Besides, BugPre constructs graph leveraging code context dependences and uses a graph convolutional neural network to learn representative characteristics of code, thereby improving defect prediction capability when version changes occur. Through extensive experiments on open-source Apache projects, the experimental results indicate that our BugPre outperforms three state-of-the-art defect detection approaches, and the F1-score has increased by higher than 16%.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3