Automatic Software Bug Prediction Using Adaptive Artificial Jelly Optimization With Long Short-Term Memory

Author:

Siva R.,S Kaliraj,Hariharan B.,Premkumar N.

Abstract

AbstractIn the software maintenance and development process, software bug detection is an essential problem because it is related to complete software success. It is recommended to begin anticipating defects at the early stages of creation rather than during the assessment process due to the high expense of fixing the found bugs. The early stage software bug detection is used to enhance software efficiency, reliability, and software quality. Nevertheless, creating a reliable bug-forecasting system is a difficult challenge. Therefore, in this paper, an efficient, software bug forecast is developed. The presented technique consists of three stages namely, pre-processing, feature selection, and bug prediction. At first, the input datasets are pre-processed to eliminate the identical data from the dataset. After the pre-processing, the important features are selected using an adaptive artificial jelly optimization algorithm (A2JO) to eliminate the possibility of overfitting and reduce the complexity. Finally, the selected features are given to the long short-term memory (LSTM) classifier to predict whether the given data is defective or non-defective. In this paper, investigations are shown on visibly obtainable bug prediction datasets namely, promise and NASA which is a repository for most open-source software. The efficiency of the presented approach is discussed based on various metrics namely, accuracy, F- measure, G-measure, and Matthews Correlation Coefficient (MCC). The experimental result shows our proposed method achieved the extreme accuracy of 93.41% for the Promise dataset and 92.8% for the NASA dataset.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3