Safe-Nav: learning to prevent PointGoal navigation failure in unknown environments

Author:

Jin ShengORCID,Meng QinghaoORCID,Dai XuyangORCID,Hou HuirangORCID

Abstract

AbstractTraining robots to safely navigate (Safe-Nav) in uncertain complex environments using the RGB-D sensor is quite challenging as it involves the performance of different tasks such as obstacle avoidance, optimal path planning, and control. Traditional navigation approaches cannot generate suitable paths which guarantee enough visible features. Recent learning-based methods are still not mature enough due to their proneness to collisions and prohibitive computational cost. This paper focuses on generating safe trajectories to the desired goal while avoiding collisions and tracking failure in unknown complex environments. We present Safe-Nav, a hierarchical framework composed of the visual simultaneous localization and mapping (SLAM) module, the global planner module and the local planner module. The visual SLAM module generates the navigation map and the robot pose. The global planner module plans a local waypoint on the real-time navigation map. In the local planner module, a deep-reinforcement-learning-based (DRL-based) policy is presented for taking safe actions towards local waypoints. Our DRL-based policy can learn different navigation skills (e.g., avoiding collisions and avoiding tracking failure) through specialized modes without any supervisory signals when the PointGoal-navigation-specied reward is provided. We have demonstrated the performance of our proposed Safe-Nav in the Habitat simulation environment. Our approach outperforms the recent learning-based method and conventional navigation approach with relative improvements of over 205% (0.55 vs. 0.18) and 139% (0.55 vs. 0.23) in the success rate, respectively.

Funder

National Key R&D Program of China

China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Reference60 articles.

1. Yasuda YDV, Martins LEG, Cappabianco FAM (2020) Autonomous visual navigation for mobile robots: a systematic literature review. ACM Comput Surv 53:1–34. https://doi.org/10.1145/3368961

2. Bonin-Font F, Ortiz A, Oliver G (2008) Visual navigation for mobile robots: a survey. J Intell Robot Syst 53:263–296. https://doi.org/10.1007/s10846-008-9235-4

3. Anderson P, Chang A, Chaplot DS, Dosovitskiy A, Gupta S, Koltun V, Kosecka J, Malik J, Mottaghi R, Savva M, & Zamir AR (2018) On evaluation of embodied navigation agents. Preprint at arXiv.org/abs/1807.06757 (2018)

4. Mishkin D, Dosovitskiy A, Koltun V (2019) Benchmarking classic and learned navigation in complex 3D environments. Preprint at arxiv.org/abs/1901.10915

5. Möller R, Furnari A, Battiato S, Härmä A, Farinella GM (2021) A survey on human-aware robot navigation. Rob Auton Syst. https://doi.org/10.1016/j.robot.2021.103837

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3