Dynamic multi-objective sequence-wise recommendation framework via deep reinforcement learning

Author:

Zhang Xiankun,Shang Yuhu,Ren Yimeng,Liang Kun

Abstract

AbstractSequence-wise recommendation, where recommend exercises to each student step by step, is one of the most exciting tasks in the field of intelligent tutoring systems (ITS). It is important to develop a personalized sequence-wise recommendation framework that immerses students in learning and helps them acquire as much necessary knowledge as possible, rather than merely focusing on providing non-mastered exercises, which is referred to optimize a single objective. However, due to the different knowledge levels of students and the large scale of exercise banks, it is difficult to generate a personalized exercise recommendation for each student. To fully exploit the multifaceted beneficial information collected from e-learning platforms, we design a dynamic multi-objective sequence-wise recommendation framework via deep reinforcement learning, i.e., DMoSwR-DRL, which automatically select the most suitable exercises for each student based on the well-designed domain-objective rewards. Within this framework, the interaction between students and exercises can be explicitly modeled by integrating the actor–critic network and the state representation component, which can greatly help the agent perform effective reinforcement learning. Specifically, we carefully design a state representation module with dynamic recurrent mechanism, which integrates concept information and exercise difficulty level, thus generating a continuous state representation of the student. Subsequently, a flexible reward function is designed to simultaneously optimize the four domain-specific objectives of difficulty, novelty, coverage, and diversity, providing the students with a trade-off sequence-wise recommendation. To set up the online evaluation, we test DMoSwR-DRL on a simulated environment which can model qualitative development of knowledge level and predicts their performance for a given exercise. Comprehensive experiments are conducted on four classical exercise-answer datasets, and the results show the effectiveness and advantages of DMoSwR-DRL in terms of recommendation quality.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3