Attention neural collaboration filtering based on GRU for recommender systems

Author:

Xia HongbinORCID,Luo Yang,Liu Yuan

Abstract

AbstractThe collaborative filtering method is widely used in the traditional recommendation system. The collaborative filtering method based on matrix factorization treats the user’s preference for the item as a linear combination of the user and the item latent vectors, and cannot learn a deeper feature representation. In addition, the cold start and data sparsity remain major problems for collaborative filtering. To tackle these problems, some scholars have proposed to use deep neural network to extract text information, but did not consider the impact of long-distance dependent information and key information on their models. In this paper, we propose a neural collaborative filtering recommender method that integrates user and item auxiliary information. This method fully integrates user-item rating information, user assistance information and item text assistance information for feature extraction. First, Stacked Denoising Auto Encoder is used to extract user features, and Gated Recurrent Unit with auxiliary information is used to extract items’ latent vectors, respectively. The attention mechanism is used to learn key information when extracting text features. Second, the latent vectors learned by deep learning techniques are used in multi-layer nonlinear networks to learn more abstract and deeper feature representations to predict user preferences. According to the verification results on the MovieLens data set, the proposed model outperforms other traditional approaches and deep learning models making it state of the art.

Funder

National Science and Technology Planning Project

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3