Blending under deconstruction

Author:

Confalonieri RobertoORCID,Kutz Oliver

Abstract

AbstractThe cognitive-linguistic theory of conceptual blending was introduced by Fauconnier and Turner in the late 90s to provide a descriptive model and foundational approach for the (almost uniquely) human ability to invent new concepts. Whilst blending is often described as ‘fluid’ and ‘effortless’ when ascribed to humans, it becomes a highly complex, multi-paradigm problem in Artificial Intelligence. This paper aims at presenting a coherent computational narrative, focusing on how one may derive a formal reconstruction of conceptual blending from a deconstruction of the human ability of concept invention into some of its core components. It thus focuses on presenting the key facets that a computational framework for concept invention should possess. A central theme in our narrative is the notion of refinement, understood as ways of specialising or generalising concepts, an idea that can be seen as providing conceptual uniformity to a number of theoretical constructs as well as implementation efforts underlying computational versions of conceptual blending. Particular elements underlying our reconstruction effort include ontologies and ontology-based reasoning, image schema theory, spatio-temporal reasoning, abstract specification, social choice theory, and axiom pinpointing. We overview and analyse adopted solutions and then focus on open perspectives that address two core problems in computational approaches to conceptual blending: searching for the shared semantic structure between concepts—the so-called generic space in conceptual blending—and concept evaluation, i.e., to determine the value of newly found blends.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Artificial Intelligence

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asymmetric Hybrids: Dialogues for Computational Concept Combination;Frontiers in Artificial Intelligence and Applications;2021-12-23

2. Using ontologies to enhance human understandability of global post-hoc explanations of black-box models;Artificial Intelligence;2021-07

3. Image Schema Combinations and Complex Events;KI - Künstliche Intelligenz;2019-07-17

4. Conceptual Puzzle Pieces;Modeling and Using Context;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3