1. V. Arya, R.K.E. Bellamy, P.-Y. Chen, A. Dhurandhar, M. Hind, S.C. Hoffman, S. Houde, Q.V. Liao, R. Luss, a. MojsiloviĆ, S. Mourad, P. Pedemonte, R. Raghavendra, J. Richards, P. Sattigeri, K. Shanmugam, M. Singh, K.R. Varshney, D. Wei, Y. Zhang, One Explanation Does Not Fit All: a Toolkit and Taxonomy of AI Explainability Techniques, 2019.
2. The Description Logic Handbook: Theory, Implementation, and Applications,2003
3. Mixed-effects modeling with crossed random effects for subjects and items;Baayen;J. Mem. Lang.,2008
4. Explainable machine learning in deployment;Bhatt,2020