Impact of olive mill wastewater (OMW) on the soil hydraulic and solute transport properties

Author:

Comegna A.ORCID,Dragonetti G.,Kodesova R.,Coppola A.

Abstract

AbstractThe Mediterranean area concentrates the world’s largest production area of olive oil. The olive oil industry represents, in this basin, one of the leading sectors of the agri-food economy. Olive mill water (OMW) is the principal waste effluent produced by the olive oil industry. Due to its high pollution load, this aqueous by-product cannot be directly disposed of in domestic wastewater treatment plants (especially those with a biological treatment unit). Untreated OMW is currently used for agronomic purposes in several countries, mainly because it is rich in valuable plant nutrients. However, OMW is characterized by toxic phenols, high organic matter, high salinity, suspended solids and several other components that may have possible negative effects on chemical and physical soil properties, as well as soil biological activities. In the present research, we focused on the effects of OMW application on transport and hydraulic soil properties. Three distinct soils from a pedological point of view were selected and a series of laboratory steady-state miscible flow tests were conducted under saturated conditions, on both OMW-treated and -untreated soil columns. Tests were conducted on disturbed and undisturbed soil columns. The approach proposed by Kachanoski, based on soil impedance (Z) measurements via the time domain reflectometry (TDR) technique, was used to monitor the leaching experiments. The breakthrough curves (BTCs) exhibited different shapes that allowed the repercussions of OMW applications on soil transport behaviour to be distinguished. Several additional tests conducted on OMW-treated and -untreated soil cores to determine water retention curves (SWRCs) and saturated hydraulic conductivity Ks allowed us to infer the probable mechanisms involved in soil hydrological behaviour changes under OMW treatments. The results show that when OMW leaches into the soil immediately after its disposal there is little effect on the evaluated hydraulic and hydrodispersive properties. By contrast, we demonstrated that a short incubation period (i.e. a short contact time between OMW and soil) of 10 days is enough to exert a great influence on all the values determined (e.g. soil pore velocity v and Ks reduced by up to one order of magnitude). These effects were especially evident in undisturbed soil samples. Graphic Abstract

Funder

Università degli Studi della Basilicata

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3