Comparing actual transpiration fluxes as measured at leaf-scale and calculated by a physically based agro-hydrological model

Author:

Sobhani Ameneh,Hassan Shawkat B.M.,Dragonetti Giovanna,Balestrini Raffaella,Centritto Mauro,Coppola Antonio,Comegna Alessandro

Abstract

The main purpose of this paper is to compare the actual transpiration rates from tomato crop, as measured at leaf scale and estimated by a macroscopic approach in an agro-hydrological model, named FLOWS-HAGES, under variable soil properties and water availability. To this aim, sixteen plots were cultivated with tomatoes in Metaponto, Southern Italy. Soil hydraulic properties (SHP) were obtained using a fast in-situ characterization method. Leaf-area index (LAI) was measured using a leaf-area meter. SHP and LAI were then used in the physically-based FLOWS-HAGES which allowed calculating the macroscopic transpiration rates, Ta,m. Single-leaf transpiration rates, Ta,l, and stomatal conductance, gs,l, were measured in situ. For comparing with Ta,m, gs,l was upscaled by Big-Leaf approach to canopy scale stomatal conductance, gs,c, which was applied to Penman-Monteith model to obtain the canopy-scale transpiration, Ta,c. Finally, multiple linear regression (MLR) was used to find the statistical relationship between Ta,m and Ta,c, and the SHP and gs,c. Results showed that the macroscopic approach smooths the spatial variability of transpiration rates. Ta,c increased with the saturated water content, θs, and the slope of the water retention curve, n, while Ta,m decreased with increasing θs and n. MLR improved significantly by introducing gs,c to predict Ta,m.

Publisher

PAGEPress Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3