Author:
Casarino Valentina,Ciatti Paolo,Sjögren Peter
Abstract
AbstractIf Q is a real, symmetric and positive definite $$n\times n$$
n
×
n
matrix, and B a real $$n\times n$$
n
×
n
matrix whose eigenvalues have negative real parts, we consider the Ornstein–Uhlenbeck semigroup on $$\mathbb {R}^n$$
R
n
with covariance Q and drift matrix B. Our main result says that the associated maximal operator is of weak type (1, 1) with respect to the invariant measure. The proof has a geometric gist and hinges on the “forbidden zones method” previously introduced by the third author.
Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. Aimar, H., Forzani, L., Scotto, R.: On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis. Trans. Am. Math. Soc. 359, 2137–2154 (2005)
2. Ball, K., Barthe, F., Bednorz, W., Oleszkiewicz, K., Wolff, P.: $$L^1$$-smoothing for the Ornstein–Uhlenbeck semigroup. Mathematika 59, 160–168 (2013)
3. Carbonaro, A., Dragičević, O.: Bounded holomorphic functional calculus for nonsymmetric Ornstein–Uhlenbeck operators. Ann. Sc. Norm. Super. Pisa Cl. Sci. XIX (5), 1497–1533 (2019)
4. Casarino, V., Ciatti, P., Sjögren, P.: The maximal operator of a normal Ornstein–Uhlenbeck semigroup is of weak type (1,1). Ann. Sc. Norm. Sup. Pisa Cl. Sci. XXI(5), 385–410 (2020)
5. Casarino, V., Ciatti, P., Sjögren, P.: Riesz transforms of a general Ornstein–Uhlenbeck semigroup. Calculus Var. Partial Differ. Equ. 60, 135 (2021)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献