Abstract
AbstractLet $$(\lambda _k)$$
(
λ
k
)
be a strictly increasing sequence of positive numbers such that $${\sum _{k=1}^{\infty } \frac{1}{\lambda _k} < \infty }$$
∑
k
=
1
∞
1
λ
k
<
∞
. Let f be a bounded smooth function and denote by $$u= u^f$$
u
=
u
f
the bounded classical solution to $$\begin{aligned} u(x) - \frac{1}{2}\sum _{k=1}^m D^2_{kk} u(x) + \sum _{k =1}^m \lambda _k x_k D_k u(x) = f(x),\quad x \in {{\mathbb {R}}}^m . \end{aligned}$$
u
(
x
)
-
1
2
∑
k
=
1
m
D
kk
2
u
(
x
)
+
∑
k
=
1
m
λ
k
x
k
D
k
u
(
x
)
=
f
(
x
)
,
x
∈
R
m
.
It is known that the following dimension-free estimate holds: $$\begin{aligned} \displaystyle \int _{{{\mathbb {R}}}^m}\! \left[ \sum _{k=1}^m \lambda _k \, (D_k u (y))^2 \right] ^{p/2} \!\! \!\!\!\! \mu _m (\textrm{d}y) \le (c_p)^p \!\! \int _{{{\mathbb {R}}}^m} \!\! |f( y)|^p \mu _m (\textrm{d}y),\;\;\; 1< p < \infty \end{aligned}$$
∫
R
m
∑
k
=
1
m
λ
k
(
D
k
u
(
y
)
)
2
p
/
2
μ
m
(
d
y
)
≤
(
c
p
)
p
∫
R
m
|
f
(
y
)
|
p
μ
m
(
d
y
)
,
1
<
p
<
∞
where $$\mu _m$$
μ
m
is the “diagonal” Gaussian measure determined by $$\lambda _1, \ldots , \lambda _m$$
λ
1
,
…
,
λ
m
and $$c_p > 0$$
c
p
>
0
is independent of f and m. This is a consequence of generalized Meyer’s inequalities [4]. We show that, if $$\lambda _k \sim k^2$$
λ
k
∼
k
2
, then such estimate does not hold when $$p= \infty $$
p
=
∞
. Indeed we prove $$\begin{aligned} \sup _{\begin{array}{c} f \in C^{ 2}_b({{\mathbb {R}}}^m),\;\;\; \Vert f\Vert _{\infty } \le 1 \end{array}} \left\{ \sum _{k=1}^m \lambda _k \, (D_k u^f (0))^2 \right\} \rightarrow \infty \;\; \text{ as } \; m \rightarrow \infty . \end{aligned}$$
sup
f
∈
C
b
2
(
R
m
)
,
‖
f
‖
∞
≤
1
∑
k
=
1
m
λ
k
(
D
k
u
f
(
0
)
)
2
→
∞
as
m
→
∞
.
This is in contrast to the case of $$\lambda _k = \lambda >0$$
λ
k
=
λ
>
0
, $$k \ge 1$$
k
≥
1
, where a dimension-free bound holds for $$p =\infty $$
p
=
∞
.
Funder
Università degli Studi di Pavia
Publisher
Springer Science and Business Media LLC