Author:
Almeida Víctor,Betancor Jorge J.,Quijano Pablo,Rodríguez-Mesa Lourdes
Abstract
AbstractIn this paper, we establish $$L^p$$
L
p
boundedness properties for maximal operators, Littlewood–Paley functions and variation operators involving Poisson semigroups and resolvent operators associated with nonsymmetric Ornstein–Uhlenbeck operators. We consider the Ornstein–Uhlenbeck operators defined by the identity as the covariance matrix and having a drift given by the matrix $$-\lambda (I+R)$$
-
λ
(
I
+
R
)
, being $$\lambda >0$$
λ
>
0
and R a skew-adjoint matrix. The semigroups associated with these Ornstein–Uhlenbeck operators are the basic building blocks of all the normal Ornstein–Uhlenbeck semigroups.
Publisher
Springer Science and Business Media LLC
Reference37 articles.
1. Betancor, J.J., Castro, A.J., Curbelo, J., Fariña, J.C., Rodríguez-Mesa, L.: Square functions in the Hermite setting for functions with values in UMD spaces. Ann. Mat. Pura Appl. 193(5), 1397–1430 (2014)
2. Bourgain, J.: Pointwise ergodic theorems for arithmetic sets. Inst. Hautes Études Sci. Publ. Math. 69, 5–45 (1989)
3. Campbell, J.T., Jones, R.L., Reinhold, K., Wierdl, M.: Oscillation and variation for the Hilbert transform. Duke Math. J. 105(1), 59–83 (2000)
4. Casarino, V., Ciatti, P., Sjögren, P.: On the maximal operator of a general Ornstein–Uhlenbeck semigroup. Math. Z. 301(3), 2393–2413 (2022)
5. Casarino, V., Ciatti, P., Sjögren, P.: The maximal operator of a normal Ornstein–Uhlenbeck semigroup is of weak type $$(1,1)$$. Ann. Sc. Norm. Super. Pisa Cl. Sci. 21, 385–410 (2020)