Long short-term enhanced memory for sequential recommendation

Author:

Duan JiashengORCID,Zhang Peng-Fei,Qiu Ruihong,Huang Zi

Abstract

AbstractSequential recommendation is a stream of studies on recommender systems, which focuses on predicting the next item a user interacts with by modeling the dynamic sequence of user-item interactions. Since being born to explore the dynamic tendency of variable-length temporal sequence, Recurrent Neural Networks (RNNs) have been paid much attention in this area. However, the inherent defects caused by the network structure of RNNs have limited their applications in sequential recommendation, which are mainly shown on two factors: RNNs tend to make point-wise predictions and ignore the collective dependencies because the temporal relationships between items change monotonically; RNNs are likely to forget the essential information during processing long sequences. To solve these problems, researchers have done much work to enhance the memory mechanism of RNNs. However, although previous RNN-based methods have achieved promising performance by taking advantage of external knowledge with other advanced techniques, the improvement of the intrinsic property of existing RNNs has not been explored, which is still challenging. Therefore, in this work, we propose a novel architecture based on Long Short-Term Memories (LSTMs), a broadly-used variant of RNNs, specific for sequential recommendation, called Long Short-Term enhanced Memory (LSTeM), which boosts the memory mechanism of original LSTMs in two ways. Firstly, we design a new structure of gates in LSTMs by introducing a “Q-K-V” triplet, a mechanism to accurately and properly model the correlation between the current item and the user’s historical behaviors at each time step. Secondly, we propose a “recover gate” to remedy the inadequacy of memory caused by the forgetting mechanism, which works with a dynamic global memory embedding. Extensive experiments have demonstrated that LSTeM achieves comparable performance to the state-of-the-art methods on the challenging datasets for sequential recommendation.

Funder

The University of Queensland

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Federated Recommender System Based on Diffusion Augmentation and Guided Denoising;ACM Transactions on Information Systems;2024-08-13

2. MSD: Multi-Order Semantic Denoising Model for Session-Based Recommendations;Electronics;2024-08-07

3. Graph-enhanced Knowledge Transfer Learning for Fashion Sequential Recommendation;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. Enhanced Self-Attention Mechanism for Long and Short Term Sequential Recommendation Models;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-06

5. Category-based and Popularity-guided Video Game Recommendation: A Balance-oriented Framework;Proceedings of the ACM Web Conference 2024;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3