Affiliation:
1. Department of Computing, Macquarie University
2. Advanced Analytics Institute, University of Technology Sydney
3. University of Shanghai for Science and Technology
Abstract
The emerging topic of sequential recommender systems (SRSs) has attracted increasing attention in recent years. Different from the conventional recommender systems (RSs) including collaborative filtering and content-based filtering, SRSs try to understand and model the sequential user behaviors, the interactions between users and items, and the evolution of users’ preferences and item popularity over time. SRSs involve the above aspects for more precise characterization of user contexts, intent and goals, and item consumption trend, leading to more accurate, customized and dynamic recommendations. In this paper, we provide a systematic review on SRSs. We first present the characteristics of SRSs, and then summarize and categorize the key challenges in this research area, followed by the corresponding research progress consisting of the most recent and representative developments on this topic. Finally, we discuss the important research directions in this vibrant area.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
182 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献