1. Adadi, A., Berrada, M.: Peeking inside the Black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018). https://doi.org/10.1109/access.2018.2870052
2. Ahmad, M.A., Eckert, C., Teredesai, A.:. Interpretable machine learning in healthcare. In: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. https://doi.org/10.1145/3233547.3233667 (2018)
3. Alom, M., Taha, T., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M., Asari, V., et al.: The history began from alexnet: a comprehensive survey on deep learning approaches. https://arxiv.org/abs/1803.01164 (2018)
4. Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016, May 23). Machine Bias. Retrieved from ProPublica: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
5. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Muller, K.: How to explain individual classification decisions. J Mach Learn Res 1803–1831. https://dl.acm.org/doi/pdf/10.5555/1756006.1859912 (2010)