AI-Based Electroencephalogram Analysis in Rodent Models of Epilepsy: A Systematic Review

Author:

Edoho Mercy1ORCID,Mooney Catherine2ORCID,Wei Lan2ORCID

Affiliation:

1. School of Computer Science, University College Dublin, D04 V1W8 Dublin, Ireland

2. FutureNeuro SFI Research Centre, School of Computer Science, University College Dublin, D04 V1W8 Dublin, Ireland

Abstract

About 70 million people globally have been diagnosed with epilepsy. Electroencephalogram (EEG) devices are the primary method for identifying and monitoring seizures. The use of EEG expands the preclinical research involving the long-term recording of neuro-activities in rodent models of epilepsy targeted towards the efficient testing of prospective antiseizure medications. Typically, trained epileptologists visually analyse long-term EEG recordings, which is time-consuming and subject to expert variability. Automated epileptiform discharge detection using machine learning or deep learning methods is an effective approach to tackling these challenges. This systematic review examined and summarised the last 30 years of research on detecting epileptiform discharge in rodent models of epilepsy using machine learning and deep learning methods. A comprehensive literature search was conducted on two databases, PubMed and Google Scholar. Following the PRISMA protocol, the 3021 retrieved articles were filtered to 21 based on inclusion and exclusion criteria. An additional article was obtained through the reference list. Hence, 22 articles were selected for critical analysis in this review. These articles revealed the seizure type, features and feature engineering, machine learning and deep learning methods, training methodologies, evaluation metrics so far explored, and models deployed for real-world validation. Although these studies have advanced the field of epilepsy research, the majority of the models are experimental. Further studies are required to fill in the identified gaps and expedite preclinical research in epilepsy, ultimately leading to translational research.

Funder

European Union’s Horizon 2020 Research and Innovation Programme

Science Foundation Ireland

European Regional Development Fund

FutureNeuro

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3