Author:
Ono Takeyuki,Eto Ryosuke,Yamakawa Junya,Murakami Hidenori
Abstract
AbstractKinematics and its control application are presented for a Stewart platform whose base plate is installed on a floor in a moving ship or a vehicle. With a manipulator or a sensitive equipment mounted on the top plate, a Stewart platform is utilized to mitigate the undesirable motion of its base plate by controlling actuated translational joints on six legs. To reveal closed loops, a directed graph is utilized to express the joint connections. Then, kinematics begins by attaching an orthonormal coordinate system to each body at its center of mass and to each joint to define moving coordinate frames. Using the moving frames, each body in the configuration space is represented by an inertial position vector of its center of mass in the three-dimensional vector space ℝ3, and a rotation matrix of the body-attached coordinate axes. The set of differentiable rotation matrices forms a Lie group: the special orthogonal group, SO(3). The connections of body-attached moving frames are mathematically expressed by using frame connection matrices, which belong to another Lie group: the special Euclidean group, SE(3). The employment of SO(3) and SE(3) facilitates effective matrix computations of velocities of body-attached coordinate frames. Loop closure constrains are expressed in matrix form and solved analytically for inverse kinematics. Finally, experimental results of an inverse kinematics control are presented for a scale model of a base-moving Stewart platform. Dynamics and a control application of inverse dynamics are presented in the part II-paper.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering
Reference33 articles.
1. Stewart, D.: A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 180(1–15), 371–385 (1965)
2. Fichter, E.F.: A Stewart platform based manipulator: general theory and practical construction. Int. J. Robot. Res. 5(2), 157–181 (1986)
3. Lebret, G., Liu, K., Lewis, F.L.: Dynamic analysis and control of a Stewart platform manipulator. J. Field Robot. 10(5), 629–655 (1993)
4. Dasgupta, B., Mruthyunjaya, T.: A Newton-Euler formulation for the inverse dynamics of the stewart platform manipulator. Mech. Mach. Theory 33(8), 1135–1152 (1998)
5. Lee, S.-H., Song, J.-B., Choi, W.-C., Hong, D.: Position control of a stewart platform using inverse dynamics control with approximate dynamics. Mechatronics 13, 605–619 (2003)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献