Combining Social Media and Survey Data to Nowcast Migrant Stocks in the United States

Author:

Alexander MonicaORCID,Polimis Kivan,Zagheni Emilio

Abstract

AbstractMeasuring and forecasting migration patterns has important implications for understanding broader population trends, for designing policy effectively and for allocating resources. However, data on migration and mobility are often lacking, and those that do exist are not available in a timely manner. Social media data offer new opportunities to provide more up-to-date demographic estimates and to complement more traditional data sources. Facebook’s Advertising Platform, for example, is a potentially rich data source of demographic information that is regularly updated. However, Facebook’s users are not representative of the underlying population. This paper proposes a statistical framework to combine social media data with traditional survey data to produce timely ‘nowcasts’ of migrant stocks by state in the United States. The model incorporates bias adjustment of Facebook data, and a pooled principal component time series approach, to account for correlations across age, time and space. We use the model to estimate and project migrants from Mexico, India and Germany, three migrant groups with varying levels and trends of migration in the US. By comparing short-term projections with data from the American Community Survey, we show that the model predictions outperform alternatives that rely solely on either social media or survey data.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Demography

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3