Integrating Traditional and Social Media Data to Predict Bilateral Migrant Stocks in the European Union

Author:

Yildiz Dilek12,Wiśniowski Arkadiusz32ORCID,Abel Guy J.42ORCID,Weber Ingmar52ORCID,Zagheni Emilio62,Gendronneau Cloé72,Hoorens Stijn2

Affiliation:

1. International Institute for Applied Systems Analysis, Laxenburg, Austria

2. RAND Europe, Rotterdam, Netherlands

3. Social Statistics Department, University of Manchester, Manchester, UK

4. Department of Sociology, University of Hong Kong, Hong Kong

5. Saarland University, Saarbrucken, Germany

6. Max Planck Institute for Demographic Research, Rostock, Germany

7. RAND Europe, Cambridge, UK

Abstract

Although up-to-date information on the nature and extent of migration within the European Union (EU) is important for policymaking, timely and reliable statistics on the number of EU citizens residing in or moving across other member states are difficult to obtain. In this paper, we develop a statistical model that integrates data on EU migrant stocks using traditional sources such as census, population registers and Labour Force Survey, with novel data sources, primarily from the Facebook Advertising Platform. Findings suggest that combining different data sources provides near real-time estimates that can serve as early warnings about shifts in EU mobility patterns. Estimated migrant stocks match relatively well to the observed data, despite some overestimation of smaller migrant populations and underestimation for larger migrant populations in Germany and the United Kingdom. In addition, the model estimates missing stocks for migrant corridors and years where no data are available, offering timely now-casted estimates.

Funder

H2020 Societal Challenges

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The digital trail of Ukraine’s 2022 refugee exodus;Journal of Computational Social Science;2024-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3