Assessing Timely Migration Trends Through Digital Traces: A Case Study of the UK Before Brexit

Author:

Rampazzo Francesco1,Bijak Jakub2ORCID,Vitali Agnese3,Weber Ingmar4ORCID,Zagheni Emilio5

Affiliation:

1. University of Oxford, Oxford, United Kingdom

2. University of Southampton, Southampton, United Kingdom

3. University of Trento, Trento, Italy

4. Saarland University, Saarbrücken, Germany

5. Max Planck Institute for Demographic Research, Rostock, Germany

Abstract

Digital trace data presents an opportunity for promptly monitoring shifts in migrant populations. This contribution aims to determine whether the number of European migrants in the United Kingdom (UK) declined between March 2019 and March 2020, using weekly estimates derived from the Facebook Advertising Platform. The collected data is disaggregated according to age, level of education, and country of origin. To examine the fluctuation in the number of migrants, a simple Bayesian trend model is employed, incorporating indicator variables for age, education, and country. The Facebook data indicates a downward trend in the number of European migrants residing in the UK. This result is further confirmed by the data from the Labour Force Survey. Notably, the outcomes reveal that in the run-up to Brexit, the most significant decline occurred among the age group of 20 to 29 years old – the largest migrant group – and the tertiary educated. This analyses could not be implemented with traditional data sources such as the Labour Force Survey, because this level of disaggregation is not provided. However, there are also important limitations associated with digital trace data, such as algorithm changes and representativeness. These limitations need to be addressed by employing sound statistical methodologies. Nevertheless, this research shows the potential of digital trace data in anticipating migration trends at a timely granularity and informing policymakers.

Publisher

SAGE Publications

Reference55 articles.

1. The Impact of Hurricane Maria on Out‐migration from Puerto Rico: Evidence from Facebook Data

2. Combining Social Media and Survey Data to Nowcast Migrant Stocks in the United States

3. Using Facebook Ads Audiences for Global Lifestyle Disease Surveillance

4. Bijak Jakub, Czaika Mathias. 2020. “Assessing Uncertain Migration Futures: A Typology of the Unknown.” QuantMig Project Deliverable D1.1. Southampton / Krems: University of Southampton and Danube University Krems.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3