γ-Cyclodextrin-graphene quantum dots-chitosan modified screen-printed electrode for sensing of fluoroquinolones

Author:

Bartolomé ManuelORCID,Soriano M. LauraORCID,Villaseñor M. JesúsORCID,Ríos ÁngelORCID

Abstract

Abstract An innovative electrochemical approach based on screen-printed carbon electrodes (SPCEs) modified with graphene quantum dots (GQDs) functionalized with γ-cyclodextrin (γ-CD) and assembled to chitosan (CHI) is designed for the assessment of the total content of fluoroquinolones (FQs) in animal source products. For the design of the bionanocomposite, carboxylated graphene quantum dots synthesized from uric acid as precursor were functionalized with γ-CD using succinic acid as a linker. Physic-chemical and nanostructural characterization of the ensuing nanoparticles was performed by high-resolution transmission scanning microscopy, dynamic light scattering, Z potential measurement, Fourier transformed infrared spectroscopy and X-ray diffraction. Electrochemical properties of assembled bionanocomposite like potential difference, kinetic electronic transfer constant and electroactive area among other parameters were assessed by cyclic voltammetry and differential pulse voltammetry using potassium ferricyanide as redox probe. The oxidation behaviour of four representative quinolones with distinctive structures was studied, obtaining in all cases the same number of involved e (2) and H+ (2) in their oxidation. These results led us to propose a single and consistent oxidation mechanism for all the checked analytes. The γ-CD-GQDs-CHI/SPCE sensor displayed a boosted electroanalytical performance in terms of linear range (4–250 µM), sensibility (LOD = 1.2 µM) and selectivity. This electrochemical strategy allowed the determination of FQs total amount in complex processed food like broths, bouillon cubes and milkshakes at three concentration levels (150, 75 and 37.5 µM) for both equimolar and different ratio FQs mixtures with recovery values ranging from 90 to 106%. Graphical abstract

Funder

Ministerio de Ciencia e Innovación

Junta de Comunidades de Castilla-La Mancha

Universidad de Castilla-La Mancha

Universidad de Castilla la Mancha

Publisher

Springer Science and Business Media LLC

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3