Lake water body extraction of optical remote sensing images based on semantic segmentation
Author:
Funder
Humanity and Social Science Foundation of Ministry of Education,China
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-022-03345-2.pdf
Reference42 articles.
1. Li P et al (2020) Hashing nets for hashing: a quantized deep learning to hash framework for remote sensing image retrieval. IEEE Trans Geosci Remote Sens 58(10):7331–7345
2. Singh A et al (2020) River ice segmentation with deep learning. IEEE Trans Geosci Remote Sens 58(11):7570–7579
3. Weng L et al (2020) Water areas segmentation from remote sensing images using a separable residual segnet network. ISPRS Int J Geo Inf 9(4):256
4. Zhang S et al (2020) Scene-adaptive remote sensing image super-resolution using a multiscale attention network. IEEE Trans Geosci Remote Sens 58(7):4764–4779
5. Zhang K, Zuo W, Zhang L (2018) Learning a single convolutional super-resolution network for multiple degradations. Proc IEEE Conf Comput Vis Pattern Recognit
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. CRAUnet++: A New Convolutional Neural Network for Land Surface Water Extraction from Sentinel-2 Imagery by Combining RWI with Improved Unet++;Remote Sensing;2024-09-12
2. HEFANet: hierarchical efficient fusion and aggregation segmentation network for enhanced rgb-thermal urban scene parsing;Applied Intelligence;2024-08-14
3. A novel semantic feature enhancement network for extracting lake water from remote sensing images;International Journal of Machine Learning and Cybernetics;2024-04-15
4. GEA-MSNet: A Novel Model for Segmenting Remote Sensing Images of Lakes Based on the Global Efficient Attention Module and Multi-Scale Feature Extraction;Applied Sciences;2024-03-04
5. Extraction of Surface Water Bodies using Optical Remote Sensing Images: A Review;Earth Science Informatics;2024-02-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3