CRAUnet++: A New Convolutional Neural Network for Land Surface Water Extraction from Sentinel-2 Imagery by Combining RWI with Improved Unet++

Author:

Li Nan12,Xu Xiaohua34,Huang Shifeng12,Sun Yayong12ORCID,Ma Jianwei12,Zhu He12,Hu Mengcheng12ORCID

Affiliation:

1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

2. Research Center on Flood & Drought Disaster Prevention and Reduction of the Ministry of Water Resources, Beijing 100038, China

3. Jiangxi Provincial Institute of Water Science, Nanchang 330000, China

4. Jiangxi Provincial Technology Innovation Center for Ecological Water Engineering in Poyang Lake Basin, Nanchang 330000, China

Abstract

Accurately mapping the surface water bodies through remote sensing technology is of great significance for water resources management, flood monitoring, and drought monitoring. At present, many scholars at home and abroad carry out research on deep learning image recognition algorithms based on convolutional neural networks, and a variety of variant-based convolutional neural networks are proposed to be applied to extract water bodies from remote sensing images. However, due to the low depth of convolutional layers employed and underutilization of water spectral feature information, most of the water body extraction methods based on convolutional neural networks (CNNs) for remote sensing images are limited in accuracy. In this study, we propose a novel surface water automatic extraction method based on the convolutional neural network (CRAUnet++) for Sentinel-2 images. The proposed method includes three parts: (1) substituting the feature extractor of the original Unet++ with ResNet34 to enhance the network’s complexity by increasing its depth; (2) Embedding the Spatial and Channel ‘Squeeze and Excitation’ (SCSE) module into the up-sampling stage of the network to suppress background features and amplify water body features; (3) adding the vegetation red edge-based water index (RWI) into the input data to maximize the utilization of water body spectral information of Sentinel-2 images without increasing the data processing time. To verify the performance and accuracy of the proposed algorithm, the ablation experiment under four different strategies and comparison experiment with different algorithms of RWI, FCN, SegNet, Unet, and DeepLab v3+ were conducted on Sentinel-2 images of the Poyang Lake. The experimental result shows that the precision, recall, F1, and IoU of CRAUnet++ are 95.99%, 96.41%, 96.19%, and 92.67%, respectively. CRAUnet++ has a good performance in extracting various types of water bodies and suppressing noises because it introduces SCSE attention mechanisms and combines surface water spectral features from RWI, exceeding that of the other five algorithms. The result demonstrates that CRAUnet++ has high validity and reliability in extracting surface water bodies based on Sentinel-2 images.

Funder

the Key Research and Development Program of Jiangxi Province

the Youth Innovation Talents Promotion Plan of the Research Center of Flood and Drought Disaster Reduction of the Ministry of Water Resources, IWHR

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3