GEA-MSNet: A Novel Model for Segmenting Remote Sensing Images of Lakes Based on the Global Efficient Attention Module and Multi-Scale Feature Extraction

Author:

Li Qiyan1,Weng Zhi12ORCID,Zheng Zhiqiang12,Wang Lixin23

Affiliation:

1. School of Electronic Information Engineering, Inner Mongolia University, Hohhot 010021, China

2. Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Hohhot 010021, China

3. School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China

Abstract

The decrease in lake area has garnered significant attention within the global ecological community, prompting extensive research in remote sensing and computer vision to accurately segment lake areas from satellite images. However, existing image segmentation models suffer from poor generalization performance, the imprecise depiction of water body edges, and the inadequate inclusion of water body segmentation information. To address these limitations and improve the accuracy of water body segmentation in remote sensing images, we propose a novel GEA-MSNet segmentation model. Our model incorporates a global efficient attention module (GEA) and multi-scale feature fusion to enhance the precision of water body delineation. By emphasizing global semantic information, our GEA-MSNet effectively learns image features from remote sensing data, enabling the accurate detection and segmentation of water bodies. This study makes three key contributions: firstly, we introduce the GEA module within the encode framework to aggregate shallow feature semantics for the improved classification accuracy of lake pixels; secondly, we employ a multi-scale feature fusion structure during decoding to expand the acceptance domain for feature extraction while prioritizing water body features in images; thirdly, extensive experiments are conducted on both scene classification datasets and Tibetan Plateau lake datasets with ablation experiments validating the effectiveness of our proposed GEA module and multi-scale feature fusion structure. Ultimately, our GEA-MSNet model demonstrates exceptional performance across multiple datasets with an average intersection ratio union (mIoU) improved to 75.49%, recall enhanced to 83.79%, pixel accuracy (PA) reaching 90.21%, and the f1-score significantly elevated to 83.25%.

Funder

National Natural Science Foundation of China

Science and Technology Major Project of Inner Mongolia

Science and Technology Plan Project of Inner Mongolia, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3