Towards Safe Autonomous Driving: Decision Making with Observation-Robust Reinforcement Learning

Author:

He Xiangkun,Lv ChenORCID

Abstract

AbstractMost real-world situations involve unavoidable measurement noises or perception errors which result in unsafe decision making or even casualty in autonomous driving. To address these issues and further improve safety, automated driving is required to be capable of handling perception uncertainties. Here, this paper presents an observation-robust reinforcement learning against observational uncertainties to realize safe decision making for autonomous vehicles. Specifically, an adversarial agent is trained online to generate optimal adversarial attacks on observations, which attempts to amplify the average variation distance on perturbed policies. In addition, an observation-robust actor-critic approach is developed to enable the agent to learn the optimal policies and ensure that the changes of the policies perturbed by optimal adversarial attacks remain within a certain bound. Lastly, the safe decision making scheme is evaluated on a lane change task under complex highway traffic scenarios. The results show that the developed approach can ensure autonomous driving performance, as well as the policy robustness against adversarial attacks on observations.

Funder

A*STAR AME Young Individual Research Grant

SUG-NAP Grant of Nanyang Technological University, Singapore

Publisher

Springer Science and Business Media LLC

Subject

Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3