Development of a novel testing concept for combined characterisation of tensile and compressive properties

Author:

Bensing Timo,Moneke MartinORCID

Abstract

AbstractA novel material testing concept is developed in order to provide tensile and compressive properties within a single mechanical test. A new specimen geometry is designed for testing in a universal testing machine. Under tensile load, both a homogeneous tensile stress condition as well as a homogeneous compressive stress condition occur in the specimen. Measurements accompanying the experimental test with digital image correlation provide tensile and compressive Poisson’s ratio as well as tensile modulus. These properties are input parameters for subsequent finite element simulations. The compressive modulus is determined by iteratively adjusting finite element simulations in order to couple experimental and simulated results. For validating the concept, experimental tests are carried out on polyoxymethylene. While the tensile Poisson’s ratio of the new concept shows the best agreement with the reference value, the compressive modulus is approximately 15% higher. Further work should focus on an appropriate material model in order to reduce the deviation.

Funder

Bundesministerium für Wirtschaft und Klimaschutz

Hochschule Darmstadt University of Applied Sciences

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3