Compressive and Tensile Properties of ABS Material as a Function of 3D Printing Process Parameters

Author:

Ali Hind B.,Oleiwi Jawad K.,Othman Farhad M.

Abstract

Additive Manufacturing (AM) technologies have been emerged as a fabrication method to obtain engineering components within a short span of time. 3D printing, also referred as additive layer manufacturing technology is one of the powerful methods of rapid prototyping (RP) technique that fabricates three-dimensional engineering components. fused deposition modelling (FDM) is one of the most commonly used additive manufacturing (AM) methods, with applications in modelling, prototyping, and production. Acrylonitrile–butadiene–styrene (ABS) is a widely used industrial thermoplastic that is also the most commonly used material in FDM technology. Understanding the impact of FDM build settings on material characteristics is essential for predicting the behaviour of ABS components. The purpose of this study is to determine the impact of specimen tensile and compressive behaviour on ABS components produced using FDM. The Ultimaker+2 printer is used to create ABS thermoplastic samples for the investigation. The samples are put through their tests using a modified form of ASTM D638 for tensile strength and ASTM D695 for compressive strength. An Instron testing machine is used to put the printed parts to the test. The approach employed was Design of Experiment (DOE). Three primary criteria are used in the plastics experiment: infill density, layer thickness, and infill pattern. We measured the tensile and compressive strengths of zigzag and gyroid specimens, as well as cross specimens. The highest compressive strength at break (25.01 MPa), Young's modulus (2.473 GPa), fracture strength (21.016 MPa), and ultimate tensile stress (23.1 MPa) were all discovered in a sample with 60% infill density, 0.05mm layer thickness, and a GYROID infill pattern.

Publisher

International Information and Engineering Technology Association

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3