Effects of the 3DP process parameters on mechanical properties of polylactic acid part used for medical purposes

Author:

Chaitat Sunthorn,Chantarapanich Nattapon,Wanchat Sujin

Abstract

Purpose This paper aims to investigate effect of infill density, fabricated built orientation and dose of gamma radiation to mechanical tensile and compressive properties of polylactic acid (PLA) part fabricated by fused deposit modelling (FDM) technique for medical applications. Design/methodology/approach PLA specimens for tensile and compressive tests were fabricated using FDM machine. The specimens geometry and test method were referred to ASTM D638 and ASTM D695, respectively. Three orientations under consideration were flat, edge and upright, whereas the infill density ranged from 0 to 100%. The gamma radiation dose used to expose to specimens was 25 kGy. The collected data included stress and strain, which was used to find mechanical properties, i.e. yield strength, ultimate tensile strength (UTS), fracture strength, elongation at yield, elongation at UTS and elongation at break. The t-test was used to access the difference in mechanical properties. Findings Compressive mechanical properties is greater than tensile mechanical properties. Increasing number of layer parallel to loading direction and infill density, it enhances the material property. Upright presents the lowest mechanical property in tensile test, but greatest in compressive test. Upright orientation should not be used for part subjecting to tensile load. FDM is more proper for part subjecting to compressive load. FDM part requires undergoing gamma ray for sterilisation, the infill density no less than 70 and 60% should be selected for part subjecting to tensile and compressive load, respectively. Originality/value This study investigated all mechanical properties in both tension and compression as well as exposure to gamma radiation. The results can be applied in selection of FDM parameters for medical device manufacturing.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference33 articles.

1. Anisotropic material properties of fused deposition modeling ABS;Rapid Prototyping Journal,2002

2. Effect of filling pattern on the tensile and flexural mechanical properties of FDM 3D printed products;Experimental Mechanics,2019

3. Tutorial how radiation affects polymeric materials;IEEE Transactions on Reliability,1994

4. Magnesium filled polylactic acid (PLA) material for filament based 3D printing;Materials,2019

5. Standard test method for tensile properties of plastic;ASTM, Standard D638,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3