Abstract
Abstract
Purpose
Upper gastrointestinal (GI) endoscopic image documentation has provided an efficient, low-cost solution to address quality control for endoscopic reporting. The problem is, however, challenging for computer-assisted techniques, because different sites have similar appearances. Additionally, across different patients, site appearance variation may be large and inconsistent. Therefore, according to the British and modified Japanese guidelines, we propose a set of oesophagogastroduodenoscopy (EGD) images to be routinely captured and evaluate its efficiency for deep learning-based classification methods.
Methods
A novel EGD image dataset standardising upper GI endoscopy to several steps is established following landmarks proposed in guidelines and annotated by an expert clinician. To demonstrate the discrimination of proposed landmarks that enable the generation of an automated endoscopic report, we train several deep learning-based classification models utilising the well-annotated images.
Results
We report results for a clinical dataset composed of 211 patients (comprising a total of 3704 EGD images) acquired during routine upper GI endoscopic examinations. We find close agreement between predicted labels using our method and the ground truth labelled by human experts. We observe the limitation of current static image classification scheme for EGD image classification.
Conclusion
Our study presents a framework for developing automated EGD reports using deep learning. We demonstrate that our method is feasible to address EGD image classification and can lead towards improved performance and additionally qualitatively demonstrate its performance on our dataset.
Funder
National Natural Science Foundation of China
Engineering and Physical Sciences Research Council
Key Technologies Research and Development Program
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献