Automated classification of gastric neoplasms in endoscopic images using a convolutional neural network

Author:

Cho Bum-Joo123,Bang Chang Seok345,Park Se Woo45,Yang Young Joo345,Seo Seung In45,Lim Hyun45,Shin Woon Geon45,Hong Ji Taek45,Yoo Yong Tak6,Hong Seok Hwan6,Choi Jae Ho3,Lee Jae Jun37,Baik Gwang Ho45

Affiliation:

1. Department of Ophthalmology, Hallym University College of Medicine, Chuncheon, Korea

2. Interdisciplinary Program in Medical Informatics, Seoul National University College of Medicine, Seoul, Korea

3. Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea

4. Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea

5. Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea

6. Dudaji Inc., Seoul, Korea

7. Department of Anesthesiology and Pain medicine, Hallym University College of Medicine, Chuncheon, Korea

Abstract

Abstract Background Visual inspection, lesion detection, and differentiation between malignant and benign features are key aspects of an endoscopist’s role. The use of machine learning for the recognition and differentiation of images has been increasingly adopted in clinical practice. This study aimed to establish convolutional neural network (CNN) models to automatically classify gastric neoplasms based on endoscopic images. Methods Endoscopic white-light images of pathologically confirmed gastric lesions were collected and classified into five categories: advanced gastric cancer, early gastric cancer, high grade dysplasia, low grade dysplasia, and non-neoplasm. Three pretrained CNN models were fine-tuned using a training dataset. The classifying performance of the models was evaluated using a test dataset and a prospective validation dataset. Results A total of 5017 images were collected from 1269 patients, among which 812 images from 212 patients were used as the test dataset. An additional 200 images from 200 patients were collected and used for prospective validation. For the five-category classification, the weighted average accuracy of the Inception-Resnet-v2 model reached 84.6 %. The mean area under the curve (AUC) of the model for differentiating gastric cancer and neoplasm was 0.877 and 0.927, respectively. In prospective validation, the Inception-Resnet-v2 model showed lower performance compared with the endoscopist with the best performance (five-category accuracy 76.4 % vs. 87.6 %; cancer 76.0 % vs. 97.5 %; neoplasm 73.5 % vs. 96.5 %; P  < 0.001). However, there was no statistical difference between the Inception-Resnet-v2 model and the endoscopist with the worst performance in the differentiation of gastric cancer (accuracy 76.0 % vs. 82.0 %) and neoplasm (AUC 0.776 vs. 0.865). Conclusion The evaluated deep-learning models have the potential for clinical application in classifying gastric cancer or neoplasm on endoscopic white-light images.

Funder

Bio & Medical Technology Development Program of the National Research Foundation (NRF) and funded by the Korean government, Ministry of Science and ICT

Publisher

Georg Thieme Verlag KG

Subject

Gastroenterology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3