Telemedical percussion: objectifying a fundamental clinical examination technique for telemedicine

Author:

Krumpholz Roman,Fuchtmann Jonas,Berlet Maximilian,Hangleiter Annika,Ostler Daniel,Feussner Hubertus,Wilhelm Dirk

Abstract

Abstract Purpose While demand for telemedicine is increasing, patients are currently restricted to tele-consultation for the most part. Fundamental diagnostics like the percussion still require the in person expertize of a physician. To meet today’s challenges, a transformation of the manual percussion into a standardized, digital version, ready for telemedical execution is required. Methods In conjunction with a comprehensive telemedical diagnostic system, in which patients can get examined by a remote-physician, a series of three robotic end-effectors for mechanical percussion were developed. Comprising a motor, a magnetic and a pneumatic-based version, the devices strike a pleximeter to perform the percussion. Emitted sounds were captured using a microphone-equipped stethoscope. The 84 recordings were further integrated into a survey in order to classify lung and non-lung samples. Results The study with 21 participants comprised physicians, medical students and non-medical-related raters in equal parts. With 71.4% correctly classified samples, the ventral motorized device prevailed. While the result is significantly better compared to a manual or pneumatic percussion in this very setup, it only has a small edge over the magnetic devices. In addition, for all ventral versions non-lung regions were rather correctly identified than lung regions. Conclusion The overall setup proves the feasibility of a telemedical percussion. Despite the fact, that produced sounds differ compared to today’s manual technique, the study shows that a standardized mechanical percussion has the potential to improve the gold standard’s accuracy. While further extensive medical evaluation is yet to come, the system paves the way for future uncompromised remote examinations.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3