Clinical decision support system using a machine learning model to assist simultaneous cardiopulmonary auscultation: Open-label randomized controlled trial

Author:

Hirosawa Takanobu1ORCID,Sakamoto Tetsu1,Harada Yukinori1,Tokumasu Kazuki2,Shimizu Taro1

Affiliation:

1. Department of Diagnostic and Generalist Medicine, Dokkyo Medical University, Tochigi, Japan

2. Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

Abstract

Background The utility of a clinical decision support system using a machine learning (ML) model for simultaneous cardiac and pulmonary auscultation is unknown. Objective This study aimed to develop and evaluate an ML system's utility for cardiopulmonary auscultation. Methods First, we developed an ML system for cardiopulmonary auscultation, using cardiopulmonary sound files from our previous study. The technique involved pre-processing, feature extraction, and classification through several neural network layers. After integration, the output class was categorized as “normal,” “abnormal,” or “undetermined.” Second, we evaluated the ML system with 24 junior residents in an open-label randomized controlled trial at a university hospital. Participants were randomly assigned to the ML system group (intervention) or conventional auscultation group (control). During training, participants listened to four cardiac and four pulmonary sounds, all of which were correctly classified. Then, participants classified a series of 16 simultaneous cardiopulmonary sounds. The control group auscultated the sounds using noise-cancelling headphones, while the intervention group did so by watching recommendations from the ML system. Results The total scores for correctly identified normal or abnormal cardiopulmonary sounds in the intervention group were significantly higher than those in the control group (366/384 [95.3%] vs. 343/384 [89.3%], P = 0.003). The cardiac test score in the intervention group was better (111/192 [57.8%] vs. 90/192 [46.9%], P = 0.04); there was no significant difference in pulmonary auscultation. Conclusions The ML-based system improved the accuracy of cardiopulmonary auscultation for junior residents. This result suggests that the system can assist early-career physicians in accurate screening.

Funder

Japan Society for the Promotion of Science

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3